
 

IQ Switch® 

ProxSense® Series 
 

 

Copyright © Azoteq (Pty) Ltd. 2017   

All Rights Reserved. Revision 1.1 February 2017 

 

IQS5xx-B000 I
2
C Bootloader  

Example Code Description 
Version 1.1 

24 February 2017 

 

 Introduction 1

The IQS5xx-B000 I2C bootloader example code illustrates how to program or upgrade the firmware 
of an IQS5xx-B000 device.   

The example code was developed using an Arduino Uno Rev3 PCB and the standard Arduino IDE.  
The integrated serial terminal in the Arduino environment was used to display output data to the 
user.   

Porting this example project to a different MCU will require the low-level I2C functions to be 
updated for that specific MCU, but most of the code is reusable. 

The IQS5xx-B000 GUI supplies a user with a firmware file that is specific to their 
application.    The firmware file is stored in Intel Hex Format and must first be parsed 
before it can be programmed to the IQS5xx IC.  For this purpose, we use a parser 
application to convert the HEX file into an equivalent C-language header file.  

For information on using the GUI to obtain your IQS5xx-B000 custom settings, and to generate the 
custom HEX file, please refer to the following document available on the Azoteq website under 
Design -> Application Notes: 

AZD087 - IQS5xx-B000 Setup and User Guide.pdf 

The rest of this document describes the example hex file parser and how to use it, as well as the 
implementation of the example I2C bootloader code. 

 Hex File Parser 2

An application was developed to convert an IQS5xx-B000 firmware file, stored in the Intel Hex 
format, to a C-language header file.  The header file can then be used by the firmware of a 
programmer.  Note that the parser application requires the newest version of the Java Runtime 
Environment (JRE) to be installed.   

Figure 2.1 shows the main GUI screen of the Azoteq HEX file parser program.  The output header 
file is saved per default to the same directory as the Azoteq HEX file parser program.  This setting 

can however be changed by clicking on .  The output filename can also be specified. 



 

IQ Switch® 

ProxSense® Series 
 

 

Copyright © Azoteq (Pty) Ltd. 2017  Page 2 of 6 

All Rights Reserved. Revision 1.1 February 2017 

 

 

Figure 2.1 Home screen of the Azoteq HEX file parser program 

The input HEX file can be selected by clicking on .  A preview of the HEX file is shown in 

the text area.  The  button becomes visible once a file has been loaded.  Click the  
button to parse the HEX file into a header (.h) file.  If the output (save as) directory is correct, click 

 which saves the header file to the directory displayed in “Save as:” as shown in Figure 2.2. 

 

Figure 2.2 Save directory and change directory button 

Figure 2.3 shows how the parser program looks after a HEX file has been parsed. 

 

Figure 2.3 The final step in the HEX file parsing 

Once the file has been saved (default filename is HEX_Array.h) it can be used to update the 
Hex_Array.h file found in the example project.  In the example code, the correct include name is 



 

IQ Switch® 

ProxSense® Series 
 

 

Copyright © Azoteq (Pty) Ltd. 2017  Page 3 of 6 

All Rights Reserved. Revision 1.1 February 2017 

 

already specified, thus the header file is automatically included.  The header file contains an array 
of the program data which is in the correct order to be sent to the IQS5xx via I2C, to upgrade the 
firmware to the required version.   A smaller second array contains the checksum data block.  

The data of each array corresponds to the IQS5xx-B000 memory as follows: 

Table 2.1 Parser header file arrays 

Array Size 
Corresponding 

address on IQS5xx 
Description 

hex_array[] 

15 360 bytes 

(240 blocks 
of 64 bytes) 

0x8400 – 0xBFFF 
This array contains the program and custom 
settings data for the IQS5xx-B000 trackpad 

crc_array[] 
64 bytes 

(1 block) 
0x83C0 – 0x83FF This array contains the checksum data 

The contents of the output HEX_Array.h file need to be modified to adhere to the syntax of the 
language used by the firmware programmer.  The large program array must be stored in the 
program memory due to space constraints.  For the example code, the firmware programmer uses 
the Arduino language (a C variant).   

The declaration of the array that contains the program data and the smaller crc array must be 
changed as shown in the table below. 

Table 2.2 Updates to parser output file 

Array Old declaration New declaration 

hex_array rom unsigned char hex_array[] const uint8_t hex_array[] PROGMEM 

crc_array rom unsigned char crc_array[] uint8_t crc_array[] 

Now with the Hex_Array.h updated correctly according to Table 2.2 for the Arduino environment, it 
can be used to replace the Hex_array.h file in the example implementation.  Now the example 
code has a customised firmware image to be loaded onto the IQS5xx IC. 

 IQS5xx I
2
C Example Bootloader Code 3

The files required for the example code are as follows: 

IQS5xx_Example_Code.ino    
defs.h 
IQS5xx.cpp      
IQS5xx.h 
I2C.cpp      
I2C.h 
HEX_Array.h  

The example bootloader implementation follows the suggested procedure described in the 
following document:  IQS5xx I2C Bootloader v2.x Technical User Guide v0.04.pdf. 

The bootloader-specific section is found in the file IQS5xx.cpp in the function ProgramIQS5xx().  
The rest of the surrounding code is an example master implementation for the IQS5xx-B000 slave 
device, where the trackpad data is displayed on the serial terminal.  For further information on the 



 

IQ Switch® 

ProxSense® Series 
 

 

Copyright © Azoteq (Pty) Ltd. 2017  Page 4 of 6 

All Rights Reserved. Revision 1.1 February 2017 

 

example implementation, you can find documentation on the Azoteq website under Software & 
Tools -> IQS5XX B000 Example Code. 

3.1 Programming summary 

The steps for programming firmware to the bootloader, as implemented in the example code, are 
as follows. 

1. Enter bootloader. 

2. Read and verify the bootloader version number to verify bootloader entry and successful 
communication with correct version of bootloader. 

3. Write the new application firmware and settings (0x8400-0xBFFF) to the device. 

4. Write the checksum descriptor section (0x83C0-0x83FF). 

5. Verify all programming was successful: 

 Perform a CRC check to verify the Application code section. 

 Read back the non-volatile custom settings section (0xBE00-0xBFFF) which is not 
included in the CRC calculation.  Compare this to the data in the hex_array[] to 
verify that each byte matches. 

6. Exit bootloader mode either by command or by resetting the IQS5xx (toggle NRST low). 

3.2 Successful implementation 

For details on compiling and uploading the project to the Arduino, and also configuring the serial 
monitor for IQS5xx-B000 data output, please refer to the readme document available in the master 
example project for the IQS5xx-B000 (Azoteq website under Software & Tools -> IQS5XX B000 
Example Code).   

If the project was correctly compiled, and the firmware bootloader programming process was 
successful, the following messages will be displayed on the serial terminal. 

 

Figure 3.1 Successful bootloader programming 

Once the firmware programming has completed, the trackpad should be functioning correctly.  This 
can be verified by interacting with the trackpad and observing the output data in the terminal. 



 

IQ Switch® 

ProxSense® Series 
 

 

Copyright © Azoteq (Pty) Ltd. 2017  Page 5 of 6 

All Rights Reserved. Revision 1.1 February 2017 

 

 

Figure 3.2 Trackpad output data 

 Summary 4

Using this example implementation, a firmware update for the IQS5xx-B000 can easily be 
implemented.  Since the IQS5xx-B000 is designed to allow customers to program their custom 
setting together with the application firmware during the production testing stage, this is an 
important step in the production process.   

Field updates could also be required, and then the bootloader programming also needs to be 
utilised to achieve this. 

  



 

IQ Switch® 

ProxSense® Series 
 

 

Copyright © Azoteq (Pty) Ltd. 2017  Page 6 of 6 

All Rights Reserved. Revision 1.1 February 2017 

 

 Contact Information 5

 USA Asia South Africa 

Physical 

Address 

6507 Jester Blvd 
Bldg 5, suite 510G 
Austin 
TX 78750 
USA 
 

Rm2125, Glittery City 

Shennan Rd 

Futian District 

Shenzhen, 518033 

China 

109 Main Street 

Paarl 

7646 

South Africa 

Postal 

Address 

6507 Jester Blvd 
Bldg 5, suite 510G 
Austin  
TX 78750  
USA 

Rm2125, Glittery City 

Shennan Rd 

Futian District 

Shenzhen, 518033 

China 

PO Box 3534 

Paarl 

7620 

South Africa 

    

Tel +1 512 538 1995       +86 755 8303 5294  

ext 808 

+27 21 863 0033       

Fax +1 512 672 8442  +27 21 863 1512 

    

Email info@azoteq.com info@azoteq.com  info@azoteq.com 
 

 

 

Please visit www.azoteq.com for a list of distributors and worldwide representation. 

 

 

 

The following patents relate to the device or usage of the device: US 6,249,089; US 6,952,084; US 6,984,900; US 

7,084,526; US 7,084,531; US 8,395,395; US 8,531,120; US 8,659,306; US 8,823,273; US 9,209,803; US 9,360,510; EP 

2,351,220; EP 2,559,164; EP 2,656,189; HK 1,156,120; HK 1,157,080; SA 2001/2151; SA 2006/05363; SA 2014/01541; SA 

2015/023634 

 IQ Switch
®
, SwipeSwitch™, ProxSense

®
, LightSense™, AirButton

TM
, ProxFusion™, Crystal Driver™ and the    

logo are trademarks of Azoteq. 

The information in this Datasheet is believed to be accurate at the time of publication.  Azoteq uses reasonable effort to maintain the information up-to-date and accurate, but does not warrant 
the accuracy, completeness or reliability of the information contained herein.  All content and information are provided on an “as is” basis only, without any representations or warranties, express 
or implied, of any kind, including representations about the suitability of these products or information for any purpose.  Values in the datasheet is subject to change without notice, please ensure 
to always use the latest version of this document.  Application specific operating conditions should be taken into account during design and verified before mass production. Azoteq disclaims all 
warranties and conditions with regard to these products and information, including but not limited to all implied warranties and conditions of merchantability, fitness for a particular purpose, title 
and non-infringement of any third party intellectual property rights. Azoteq assumes no liability for any damages or injury arising from any use of the information or the product or caused by, 
without limitation, failure of performance, error, omission, interruption, defect, delay in operation or transmission, even if Azoteq has been advised of the possibility of such damages. The 
applications mentioned herein are used solely for the purpose of illustration and Azoteq makes no warranty or representation that such applications will be suitable without further modification, 
nor recommends the use of its products for application that may present a risk to human life due to malfunction or otherwise. Azoteq products are not authorized for use as critical components in 
life support devices or systems. No licenses to patents are granted, implicitly, express or implied, by estoppel or otherwise, under any intellectual property rights.  In the event that any of the 
abovementioned limitations or exclusions does not apply, it is agreed that Azoteq’s total liability for all losses, damages and causes of action (in contract, tort (including without limitation, 
negligence) or otherwise) will not exceed the amount already paid by the customer for the products.  Azoteq reserves the right to alter its products, to make corrections, deletions, modifications, 
enhancements, improvements and other changes to the content and information, its products, programs and services at any time or to move or discontinue any contents, products, programs or 
services without prior notification. For the most up-to-date information and binding Terms and Conditions please refer to www.azoteq.com 

www.azoteq.com/ip 

info@azoteq.com 

 

http://www.azoteq.com/

